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Privacy-Preserving Multi-keyword Top-£
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Xiaofeng Ding, Member, IEEE, Peng Liu and Hai Jin, Senior Member, IEEE

Abstract—Cloud computing provides individuals and enterprises massive computing power and scalable storage capacities to support
a variety of big data applications in domains like health care and scientific research, therefore more and more data owners are involved
to outsource their data on cloud servers for great convenience in data management and mining. However, data sets like health records
in electronic documents usually contain sensitive information, which brings about privacy concerns if the documents are released or
shared to partially untrusted third-parties in cloud. A practical and widely used technique for data privacy preservation is to encrypt
data before outsourcing to the cloud servers, which however reduces the data utility and makes many traditional data analytic
operators like keyword-based top-k document retrieval obsolete. In this paper, we investigate the multi-keyword top-k search problem
for big data encryption against privacy breaches, and attempt to identify an efficient and secure solution to this problem. Specifically, for
the privacy concern of query data, we construct a special tree-based index structure and design a random traversal algorithm, which
makes even the same query to produce different visiting paths on the index, and can also maintain the accuracy of queries unchanged
under stronger privacy. For improving the query efficiency, we propose a group multi-keyword top-k search scheme based on the idea
of partition, where a group of tree-based indexes are constructed for all documents. Finally, we combine these methods together into
an efficient and secure approach to address our proposed top-£ similarity search. Extensive experimental results on real-life data sets
demonstrate that our proposed approach can significantly improve the capability of defending the privacy breaches, the scalability and
the time efficiency of query processing over the state-of-the-art methods.
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1 INTRODUCTION owners need effective, scalable and privacy-preserving ser-

LOUD computing has emerged as a disruptive trend in

both IT industries and research communities recently,
its salient characteristics like high scalability and pay-as-
you-go fashion have enabled cloud consumers to purchase
the powerful computing resources as services according
to their actual requirements, such that cloud users have
no longer need to worry about the wasting on computing
resources and the complexity on hardware platform man-
agement [1], [2]. Nowadays, more and more companies and
individuals from a large number of big data applications
have outsource their data and deploy their services into
cloud servers for easy data management, efficient data
mining and query processing tasks.

But when the companies and individuals enjoy these
advantages in cloud computing, they also need to take the
privacy concern of the outsourced data into account. Be-
cause data sets in many applications often contain sensitive
information like e-mails, electronic health records and finan-
cial transaction records, when the data owner outsourcing
such sensitive data to the cloud servers which are consid-
ered to be partially trusted, the data can be easily accessed
and analyzed by cloud service providers illegally. Since the
analysis of these data sets may provide profound insights
into a number of key areas in society (such as e-research,
healthcare, medical and government services), thus data
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vices before releasing their data to the cloud.

Data encryption has been widely used for data privacy
preservation in data sharing scenarios, it refers to mathe-
matical calculation and algorithmic scheme that transform
plaintext into cyphertext, which is a non-readable form to
unauthorized parties. A variety of data encryption models
have been proposed [3], [4], [5] and they are used to encrypt
the data before outsourcing to the cloud servers. However,
applying these approaches for data encryption usually cause
tremendous cost in terms of data utility, which makes
traditional data processing methods that are designed for
plaintext data no longer work well over encrypted data.

The keyword-based search is such one widely used
data operator in many database and information retrieval
applications, and its traditional processing methods can-
not be directly applied to encrypted data. Therefore, how
to process such queries over encrypted data and at the
same time guarantee data privacy becomes a hot research
topic. Fortunately, many methodologies based on searchable
encryption have been studied. For example, [6], [7], [8]
deal with the single keyword search, and works [9], [10],
[11], [12], [13] support the multi-keyword boolean search.
However, the single keyword search is not smart enough to
support advanced queries and the boolean search is unre-
alistic since it causes high communication cost. Therefore,
more recent works like [14], [15], [16] focus on the multi-
keyword ranked search, which is more practical in pay-as-
you-go cloud paradigm. But most of these methods cannot
meet the high search efficiency and the strong data security
simultaneously, especially when applying them to big data
encryption poses great scalability and efficiency challenges.
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Motivated by this, in this paper, we focus on a special
type of multi-keyword ranked search, namely the multi-
keyword top-k search, which has been a very popular
database operator in many important applications, and only
needs to return the £ documents with the highest relevance
scores. For supporting multi-keyword search, we introduce
the vector space model which represents documents and
queries as vectors. In order to support top-k search, the
relevance scores between documents and queries should be
calculated, therefore, the TFxIDF (term frequency X inverse
document frequency) model is introduced as a weighting
rule to compute the relevance scores for ranking purposes.

In addition, to improve the query efficiency for better
user experiences, we propose a group multi-keyword top-
k search scheme (GMTS), which is based on partition and
supports top-k similarity search over encrypted data. In this
scheme, the data owner divides the keywords in the dictio-
nary (suppose that the dictionary contains all the keywords
that could be extracted from all documents) into multiple
groups and establishes a searchable index for each group.
On the other side, to better control the size of indexes, we
adopt champion lists [17], [18] into our scheme, where the
index of a keyword group only stores the top-ck documents
of the corresponding keyword (the top-ck documents of
a keyword represent the c¢ * k documents that have the
highest relevance scores to this keyword, where c is a pos-
itive integer). Furthermore, we propose a random traversal
algorithm (RTRA) to strengthen the data security, where the
data owner builds a binary tree as searchable index and
assigns a random switch to each node, so the data user can
assign a random key to each query. Therefore, the data user
can change the results and visiting paths of queries by using
different keys, which maintains high accuracy of queries.
Finally, we combine the GMTS and the RTRA together into
an efficient and secure solution to our proposed problem.

Our contributions can be summarized as follows:

e We first propose the random traversal algorithm
which makes the cloud server randomly traverse
on index and returns different results for the same
query, and in the meantime, it maintains the accuracy
of queries unchanged for higher security.

o Based on the random traversal algorithm, we present
one both efficient and secure searchable encryption
scheme, which can support top-k similarity search
over encrypted data. In this scheme, the data owner
can control the level of query unlinkability without
sacrificing accuracy.

e Our experimental results show that our methods
are more efficient than the state-of-the-art methods
and can better protect data privacy. Especially, our
proposed method has good scalability performance
when dealing with large data sets.

The rest of this paper is organized as follows: In Section
2, we review and analyze the related works. Section 3 intro-
duces the system model and threat model, the preliminaries
and our design goals. The random traversal algorithm is
introduced in Section 4. Section 5 describes the framework
of the GMTS and describes the RGMTS framework in
Section 6. Section 7 shows and analysis our experimental
results. Section 8 concludes this paper.

2 RELATED WORK

Searchable encryption (SE) is a hot research field, especially
with the emergence of cloud computing. In this section,
we review and analyze the existing searchable encryption
schemes. SE can be divided into public key searchable
encryption [4], [9], [19], [20] and symmetric searchable en-
cryption (SSE) [3] [7], [8] according to different cryptog-
raphy primitives. In this paper, we focuses on the sym-
metric searchable encryption because public key searchable
encryption usually are computationally expensive [15], [21].

Abundant works [3], [7], [8], [22], [23] are proposed to
deal with symmetric searchable encryption. Song et al. [6]
first defined the problem of searching on encrypted data
and proposed a symmetric searchable encryption scheme
with linear complexity. After that, Goh et al. [7] formulated
a security definition for SSE and proposed a secure index
which is based on pseudo-random functions and Bloom
filters, but the time cost of Goh’s scheme is O(n). Curtmola
et al. [3] introduced two formal definitions of SSE and pro-
posed a method which is based on inverted list to improve
the query performance, their method is proved to be more
efficient than other works. However, most of these works
can only support single keyword boolean search, which is
not advanced enough to support complex functionalities. In
recent years, many works have been proposed to achieve
different kinds of complex queries like similarity search,
multi-keyword search, etc. In general, the literatures [22]
and [24] used wildcard-based techniques, [25] based on B*?-
tree and [26], [27], [28], [29] applied the locality sensitive
hashing (LSH) to deal with similarity search. Works [10],
[11], [12], [13] support multi-keyword boolean search, but
boolean search is inefficient because it returns all the doc-
uments that satisfy the query criteria. Hence, some recent
works are proposed to deal with the bandwidth-saving
multi-keyword ranked search [14], [15], [16], [23], [30].

Cao et al. [15] proposed the multi-keyword ranked
search over encrypted data for the first time and built a
searchable index based on the vector space model, and
chosen ”coordinate matching” to measure the similarity
between queries and documents. However, in their schemes,
the time complexity of search is O(nm) (n is the number
of keywords in dictionary, m is the size of the documents
that stored in the cloud server), and the time complexity
of trapdoor construction is also very high. Sun et al. [14]
proposed a tree-based index structure which is based on the
vector space model and the TFXIDF model. This structure
achieves sub-linear time complexity, but it is vulnerable in
protecting data privacy. One step further, Xia et al. [16]
proposed a Greedy Depth-first Search tree-based searchable
encryption scheme EDMRS, which achieved more efficiency
than early works, but the cost of search remains high and
the time complexity of creating trapdoor is high O(n?).

The works [14], [15], [16] add random numbers &; in
indexes or queries to disturb the relevance scores between
queries and documents, and they claimed that the value
of >~ &; can be adjusted to control the level of query un-
linkability. But they can not protect the query unlinkability
thoroughly, because in order to guarantee the accuracy of
queries, the level of query unlinkability is usually get lim-
ited. Actually, the cloud server can easily link two identical
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Fig. 1. The system model of searching over outsourced encrypted data.

queries by analyzing and comparing the results and visited
paths. For instance, if the data user submits two identical
queries to the cloud server, and sets the correct ratio to 80%.
Even though the relevance scores are disturbed by adding
random numbers, it is expected that at least 60% of the
results and visited paths are the same.

3 PROBLEM FORMULATION
3.1 System Model

As shown in Fig. 1, the system model we considered in
this paper contains three parts: the data owner, the data
user and the cloud server. The data owner uploads docu-
ment collection D to the cloud server, but this collection
may contain sensitive information. To protect data privacy,
the data owner has to encrypt D before outsourcing it
to the cloud server. Furthermore, in order to enable the
cloud server to process query efficiently over the encrypted
document collection C, the data owner constructs an en-
crypted searchable index I locally. Finally, the data owner
outsources both the encrypted document collection C' and
the encrypted searchable index I. to cloud, and shares the
secret key of trapdoor generation and document decryption
to authorized data users with secure channels.

When the data user wants to search with a query, s/he
generates the trapdoor T  for this query firstly by query
encryption, and then submits the trapdoor to cloud server
for query processing. After receiving T, the cloud server
calculates the relevance scores between trapdoor 1" and the
documents in index I, and returns k documents with the
highest scores to the data user.

Note that, the search control is outside the scope of our
paper. Therefore, similar to works [16], [22], [27], [31], [32],
we assume data users are trusted entities and the trapdoors
are generated by data users themselves.

3.2 Threat Model

In this paper, we treat data owner and data user as trusted
entities, but cloud server is considered to be “honest-but-
curious” as adopted in most works on secure cloud data
search. The server is honest as it runs the programs and
algorithms correctly, it is curious since the cloud service
providers can easily access and analyze the encrypted data,
and even record queries to learn additional information.
Based on the information which can be learned by cloud
sever, we consider two threat models as [15], [31].

Known Ciphertext Model. This threat model corre-
sponds to the ciphertext-only attack, as the cloud server

3
TABLE 1
Notations
Notation Description
D the plaintext document collection, denoted as
D ={D1,Da,...,Dn}, D; is a document of D
C the encrypted document collection, denoted as
C= {Cly C2: ) Cm}
w the dictionary which contains n keywords

which appeared in the document collection D,
denoted as W = {w1, w2, ..., wn }

Wy the keyword set which is a subset of the dictio-
nary W and contains ¢t keywords that data users
want to search

the keyword group, denoted as WG =
{WG1,WGa,...,WG}, where each group
WG, contains d keywords

b the number of groups in the keyword group
WG, it means b = ceiling(n/d)

I the unencrypted form of searchable index

Ie the encrypted form of the searchable index I
the query which is constructed based on the
keyword set W,

the trapdoor, which is the encrypted form of
query @

Re the search results that the cloud server returns
to data users, denoted as Re = {R1, Ro, ..., Ry }
the relevance score between query () and docu-
ment D;

WG

Score(Q, D;)

only knows the encrypted document collection C, encrypted
searchable index /. and trapdoor 7T'.

Known Background Model. Compared to the known
ciphertext model, this model is more stronger, as the cloud
server here not only knows the ciphertext of document
collection, searchable index and query, it is supposed to
have other background knowledge like statistic information
about the document collection, which will expose more
knowledge to cloud. For instance, when the cloud server
know the normalized TF distributions of certain keywords,
it can identify these keywords by comparing the normalized
TF distributions [14], [15], [16], [30], [33].

3.3 Preliminaries
3.3.1  Multi-keyword top-k Search

Let D be the plaintext document collection that the data
owner will outsource to cloud servers, and D; represents
a document in D. W is a dictionary and Score(Q, D;) is
the relevance score between query () and document D, (the
mainly used notations in this paper are summarized in Table
1). The multi-keyword top-k search [17] is used to find the
k documents with the highest relevance scores to query @,
the formal definition is given as follows:

Definition 1. (Multi-keyword Top-k Search) Given a query
Q and a document collection D, find k documents
Re = {R1, Ry, ..., R} in D with the highest relevance
scores, this is to say, VD; € D/Re,Score(Q,D;) <
Score(Q. R;)(1 < j < k).

e.g., document collection D has four documents, as
shown in Fig. 2, where each document is represented as
a vector and these vectors store the T'F values of their
corresponding keywords. For a query (0,0.5,0,0,0.1,0.6),
the relevance scores of the documents D¢, Dy, D3 and Dy
are 0.33, 0.24, 0.12 and 0.63, respectively. It is obvious that
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Fig. 2. A document collection, where each document is represented as
a vector.

hd

documents D; and D, are the top 2 documents, as their
scores are higher than others.

3.3.2 Vector Space Model and TFx IDF

Vector space model [34] and TFxIDF [17] are widely used in
information retrieval. In vector space model, each document
and query is represented as a vector (but in this paper,
each document and query is represented as a group of
vectors), which supports multi-keyword search quite well.
TFXIDF is used as a weighting function to calculate the
similarity between documents and queries. Assume w; is
a keyword in the dictionary W, the term frequency (TF) of
w; in a document D; is denoted as T'F; ;, which measures
the weighting of keyword w; in document D;. Inverse
document frequency (IDF) is used to measure the overall
importance of a keyword in the entire document collection,
we use IDF; to represent the IDF of keyword w;. The
relevance score between query ) and document D is:

Score(Q, D;) = !

= By > TF,;-IDF, 1)

w; €EQ

Here TF; ; = 1 + In f; ;, where f;; is the number of times
that the keyword w; occurs in document D;. And IDF; =
In(1 + %), where m; is the number of documents which
contain the keyword w;. |D;| denotes the Euclidean length
of document D, and it can be calculated as:

Z (]. + In fj,i)2

w;€D;

|D;| =

3.4 Design Goals

Our goals contain three aspects: 1) Supporting multi-
keyword top-k similarity search over encrypted data; 2)
Search with high efficiency; 3) Privacy-preserving. The de-
tails are listed as below:

Multi-keyword top-k Search: To design a searchable
encryption scheme that enables the cloud server to support
multi-keyword top-k similarity search over encrypted data;

Search efficiency: Our scheme should be efficient in
index construction, trapdoor generation and search process-
ing, and it should be more efficient and effective than the
state-of-the-art methods;

Privacy-preserving: Our scheme should protect the pri-
vacy of indexes and queries at the same time. They are

o Index security and Query security: The plaintext infor-
mation of encrypted searchable index and trapdoor
should be protected.

e Keywords Privacy: The cloud server cannot identify
whether a certain keyword is contained in a query
by analyzing indexes or search results.

N, Ny (N3 N,

Fig. 3. An example of tree-based index for document collection D =
{D1, D2, D3}.

e Query Unlinkability and Access Pattern: The cloud
server cannot distinguish whether two identical trap-
doors are from the same query, which needs us to
hide the visiting paths on index and access pattern of
query, where access pattern represents the available
information in search results [15].

4 THE RANDOM TRAVERSAL ALGORITHM

Fig. 3 is a tree-based index, where N, N3, N3, Ny are the
leaf nodes. Both the stored value of nodes N3 and N, are
document Ds. If the result of a query contains documents
D; and D3, then we have to path through edge 1 and 3
to visit D;. On the contrary, visiting D3 has two options:
from edge 2 to 5 or from edge 2 to 6. Inspired by the above
example, we propose a random traversal algorithm (RTRA).
In RTRA, giving two identical queries, their visiting paths in
index and search results can be different, but maintain the
accuracy of queries unchanged. The main idea is as follows:
1) enlarging the whole document collection £ times, hence
each document in result has F options; 2) assigning a switch
to each document; 3) building a tree-based index for the
whole document collection, where document identifiers are
stored in leaf nodes. 4) assigning a random key to each
query. Therefore, data users can control the visiting paths
and search results by assigning different keys. Next, we
further discuss the details of RTRA.

4.1 RTRA Framework
4.1.1 Enlarging Document Collection

Firstly, the documents in collection D are randomly divided
into L groups with the same size, and the divided document
collection is represented as DG = {DG;,DGo,...,DGL}.
Then, each document group is copied E times and each
document is assigned with a unique document identifier.
We use DG? to represent the enlarged document collection,
where DG® = {DG},..,DG¥, .., DG} ..., DGE} and DG’
represents j-th copy of document group DG;. After D is
enlarged, each document has I copies and were distributed
in different groups.

For example, assume L = 2, E = 2 and document
collection D has four documents D = {Di, Dy, D3, Dy4}.
We divide D into two groups DGy = {D;, Dy} and
DGy = {D3, Dy4}. After D is enlarged, we get

DG*® = {DG},DG%, DG}, DG3}
= {{D1, D3}, {D3, D1}, {Ds, Di}{Di, D5}}
= {D%aD%vDSaD%vDé’DiaDing}
Where D} and D? are two file copies of document D; (1
<i<4).
Notice 1). The order of documents in each group is
random (e.g., the order of copy DG} is Di, D}, while in
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DG? is D3, D? instead of D?, D3 ). The reason is that
if the order of two group copies are the same, visiting
path in the low levels of index may be the same. 2). For
disturbing the visiting path of query on index, the order of
each group in DG? is still selected randomly, such as the
order of DG* could be { DG1, DG3, DG}, DG%} instead of
(DG}, DG2, DG}, DG2}.

4.1.2 Assigning Switch

Each document of the enlarged document collection DG® is

assigned a switch which is a vector with length r (where r =

LxE). For switch formulation and describe conveniently, we

give the definition of The Same Switch Form:

Definition 2. (The Same Switch Form) Given two nodes Ny
and Ns, if not all bits of their switches are zero, and both
Nj.switchli] and Ny.switchli] are equal to zero or bigger
than zero at the same time (where v = 1,2, ..,7), we call the
two switches have the same form and the two nodes have the
same switch form.

If two documents belong to the same group and they
will be assigned with the switches that have the same form,
otherwise they are different. switch] represents the switch
of these documents which belong to document group DG
and it is calculated as follows:

o 0 ifkl=ixE+j

tehl[k] = 2
switchi[] {9+|Rand()|%7’ freisE+j @
Where k = 1,2, ...,r. 6 and 7 are two positive integers, and
they are set to 5 and 10 in this paper. Rand() is a random

number generator and |Rand()| is its absolute value.

4.1.3 Building Index

We build a binary tree I for document collection DG* as
index, where document identifiers are stored in leaf nodes.
Let N represents a node in I/, and we denote its form as
(fid,l.,re, switch). If N is a leaf node, fid is the document
identifier, [, and 7. are null. Otherwise, fid is null, I.
and r. point to its left and right child, respectively. If the
children of node N have the same switch form, we add
node N to the document group where its children belong
to, furthermore, we calculate the switch of this node by
Equation 2. Otherwise, all the bits of the switch are set to
Z€ero.

4.1.4 Assigning Keys

For getting different visiting paths and search results when
processing a query at two different periods, the query is
assigned with a random key, where the key is a vector with
the same length as switches and represented as key. When
generating a key, data user selects one dimension from each
E dimensions of key, and the selected dimensions are set to
zero, while the others are set to different random negative
integers. The reason is that each document has F copies,
but when processing search, the cloud server only needs
to traverse one copy. The traversed copy is controlled by
the values of key, if key[i * E + j] equals to zero then the
documents in DG? will be traversed (where i in [1, L] and j
in [0, E — 1]). The value of key is defined as below:

_9_ o |
key[n]{ 0 — |Rand()|%7 if k!l =j* E+w,

3
0 ifk=7*E+w, ©)

\\ ,
D; D) (D ) (D3 D) (D D

D: Dy (D} D) (D3 D) (D; D;
[6I0[0]0] [6I0l0[0] [0T0I0[5] [00l0[5] [071010] [0T71010] [0T0[610] [0[0]610]
(b)

Fig. 4. An example of the random traversal algorithm with document
collection D = {D1,D2,D3,D4}, E = 2 and L = 2. The search
process starts at the root node r; and uses depth-first traversal method
to visit all nodes. (a) shows the visiting path and query results with
key [0,—6,0,—7], the search starts from rq, and first reaches leaf
nodes D} and D} through r» and r4, because the scores of ro
and r4 are equal to 0. Then, the nodes rs, r3, r¢, r7, D3 and D}
are visited. The nodes D3, D2, D3 and D? are not traversed, be-
cause the scores of r5 and rg are less than 0. Finally, we get results
{D},D},Di,D}}. (b) shows the visiting path and results of query with
key [—8,0,—5,0], the results are {D%, D3, DZ, D}, the visited nodes
are {r1,r2,r4,75,D3,D3,r3,76,D3, D}, 17}

Where £ = 1,2,...,7, j = floor(k/E). w; is a random
integer in [0, F' — 1] which represents the selected dimension
by the data user.

For example, if we assume L = 2, E = 2, and the
divided document collection is DG = {DG1, DG }. Thus,
the key is a vector of length 4 and each document has
two copies. Where key[l], key[2], key[3] and key[4] are
used to control the document groups DG, DG2, DG}
and DG3, respectively. Such as that when key[1] equals to
zero, the document group DG% will be traversed, and so
on. Therefore, there have four possibilities {DG1, DG3},
{DGi,DG%}, {DG32,DG1}, {DG3,DG3}, and the cor-
responding keys are [Z,RN,Z,RN|, [Z,RN,RN,Z|,
[RN,Z,Z,RN], [RN,Z, RN, Z], where Z is zero and RN
can be any random negative integer.

4.1.5 Query Processing

Search starts from the root to the leaf nodes in the tree. For
any node N, only when key - switch > 0 can the cloud
server continues to walk along this node. As shown in Fig. 4,
the switch of r5 is switchs = [0,0,0,6] and the switch of
node r7 is switch;y = [0,0,5,0]. If the key of a query is
key; = [0,—6,0,—7], then documents D} and D} will be
traversed, while D% and Dﬁ will be ignored, because key; -
switch; = 0 and key; - switchs = —42. On the contrary,
if the key is keys = [—8,0,—5,0], documents D} and D}
will not be traversed, but D3 and D? will be traversed since
keys - switchy = —25 and keys - switchs = 0.

Note that, even though documents D3 and D3 have
different identifiers, since both of them are copies of original
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document D3. Hence, D3 and D3 have the same content.
Therefore, for two identical queries with different keys, the
cloud server may visit different paths and return different
results, but their query accuracies are the same.

4.2 Analysis

We have introduced the unencrypted RTRA, but for the
concern of more strict security guarantee, the following
analysis is based on the encrypted RTRA (the encryption
method will be introduced in next section) such that an
adversary cannot distinguish two copies just rely on their
ciphertext.

4.2.1 Functionality and Information Leakage

When processing queries in the index, if the switch of one
node is zero, then this node will be always traversed by the
cloud as its product with any key always equals to zero.
On the contrary, if the product is less than zero, this node
and its children will be pruned. Therefore, to reduce the
number of traversed nodes, we try to keep the neighboring
leaf nodes in the index to have the same switch form.
Thus when building index, these documents come from one
group are assigned with the same switch form. Although
the above method may expose the grouping information,
the adversaries (cloud servers) cannot identify which copies
are from one certain document, since the documents order in
each group is randomly assigned. Furthermore, since each
switch and key contains a set of different random numbers,
thus the product of one key with different switches or the
product of one switch with different keys are different.
Therefore, adversaries cannot directly identify the copies of
one certain document by comparing the products.

In addition, document collection D is divided into L
groups and each group is copied E times. Therefore, a data
user can generate £ different keys, thus the expectation
of the same document in the query result with different
keys is |Re| /E, where |Re\ is the size of search results. It is
obviously that the more number of different documents in
two search results, the more difficult for adversaries to judge
whether the two queries come from the same request or
not. Therefore, the data owner can raise the level of security
strength by increasing the value of E.

4.2.2 Space Consumption

The storage space occupied by RTRA is E times of original
index, as the value of E increases, the space consumption
also becomes larger. Thus, there is a trade-off between space
and security, but with the rapid development of computer
hardware, the space will not be the main problem. However,
an approach to reduce the size of indexes is also introduced
in the next section.

5 THE SCcHEME oF GMTS

In this section, we first introduce the unencrypted group
multi-keyword top-k search scheme (UGMTS), which is
designed to support multi-keyword top-k similarity search
over encrypted data and to improve query efficiency. Then,
we describe the EGMTS which is an encrypted variation
based on UGMTS.

5.1 UGMTS

The UGMTS framework involves three parts: 1) Building
searchable index locally; 2) Query construction based on the
search interests of data users; 3) Search processing in cloud.

5.1.1 Building Index

A data owner builds a searchable index I in local before
outsourcing the data to cloud. The index I contains two
index groups, that is I = {IC,IR}, where IC is used
to select effective candidate documents, and IR is used
to calculate the final relevance scores between queries and
candidate documents. The details are as follows.

Firstly, the data owner creates an inverted index V
for the dictionary W, the inverted index consists of
a set of inverted lists and it is denoted as V =
{vl(wy),vl(ws), .., vi(wy)}. Where vl(w;) is the inverted list
of keyword w; and represents the top ¢ * k documents of
keyword w; (where c is a positive integer).

Note that, we have adopted the champion lists to our
scheme as each inverted list only stores the top ¢ * k docu-
ments of each corresponding keyword, which can improve
query efficiency and save storage space, but it may also
result in lower query accuracy. However, data owners can
control the side-effect by adjusting the value of ¢ (in this
paper, c is set to 1, in performance analysis we show that ¢
has limited impact on query accuracy).

Secondly, the data owner divides dictionary W into mul-
tiple groups as WG = {WG1, WGs, ..., WGy}, where each
group only contains d keywords. The data owner also finds
the top ¢ * k documents of each word group based on the
inverted index V, denoted as VG = {VG1,VGa,..,VGp},
where VG; is the top c * k documents of word group WG;.
To formulate this problem, we give the definition of top-k
documents of word group:

Definition 3. (Top-k Documents of Word Group) Giving a word
group {wy,wa,...,wq}, the top-k documents of this word
group equal to U(vl(wy) U vl(wz) U ... Uvl(wg)) , where
function U() is used to remove duplicated documents.

Thirdly, the data owner builds a keyword balanced bi-
nary tree [16] as index for each keyword group from the
corresponding top-ck documents (e.g. IC; is the index of
keyword group WG, and it is built from V G;). The indexes
combine as IC = {ICy,1Cs,...,ICy}, N; represents a node
in index IC; and it has form as < fid,l.,7.,val >, where
l. and r, are children node of NV;, and val is a data vector
with d dimensions. If N; is a leaf node, then fid is its corre-
sponding document identifier and val stores the TF values
of keyword group WG; (e.g., the val[j] equals to the TF
value of keyword WG, ; in document Dy;q, where WG ;
is the j-th keyword in keyword group W G;). Otherwise, if
node N; is an intermediate node, then the fid is empty and
the val is computed as below:

vallj] = max{l..val[j], reval[j]},j =1,2,...,d  (4)

Where [..val and r..val are the stored vectors of the left and
right children of N;, respectively.

Finally, the data owner constructs another index
group IR for the document collection D, where IR =
{IR1,IRs,...,IR,,}. We use I Ry;gq to represent an index in
IR. The index I Ry;q is built based on document D ¢;4, and
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Fig. 5. This is an example of UGMTS. 1) The document collection D contains four documents { D1, D2, D3, D4}, the dictionary W has six keywords
{a,b,c,d,e, f}.2) The data owner builds an inverted list for each keyword and divides W into three groups where each group contains two words,
then merges the inverted index V' into three groups. 3) The data owner builds a searchable index for each keyword group. 4) The data user
submits the search keywords {b, ¢, f} which only contains the keywords in WG1 and W@G3s, so we build query groups QC = {QC1,QCs} and
QR = {QR1,QR3}, then QC and QR were send to cloud server. 5) The cloud server searches the top-2 documents on the index IC for query
QC1 and searches the top-2 documents of QC3 on the index ICs, it gets results list; = {D1, D4} and lists = {D2, D4}. Then the cloud server
merges all results into collection C'List as candidate documents, where C'List = {D1, D2, D4}. Finally, the cloud server uses Equation 6 to
calculate the final scores between the query group QR and all the documents in C'List, and returns k& documents with highest relevance scores to
the data user as results.

D, . Dz

it can be denoted as IRy;q =< fid,vali,vals,...,valy >,

where wval; is a vector with length d and wal;[j] = Algorithm 1 Search Process of UGMTS
TFWG; ;,Dygia) (5 =1,...,4). Require: The query (), the searchable index I;
Ensure: Return k£ documents with highest scores to the data

5.1.2 Query Construction

When the data user wants to search with keyword set
W, s/he generates query group (). The query group is
represented as @ = {QC, QR}, where QC is used to search FINDTOPK(QC;, root of IC;, 0, k)

1

2

3
on index group IC and QR will be processed in I R. 4: Merge top-k documents list; of QC; into CList
Query group QC is denoted as {QC1,QC5,...,QCh}. 5. end for
6
7
8
9

user;
: function SEARCH(Q, I, k)
for query QC; in query group QC do

QC; represents a query in (QC and its a query vector with for document D; in CList do

length d. The j-th dimension of query QC; corresponds to if Score(QR, IR;) > k-th score in Re then
keyword WG, ;. If WG, ; exists in the keyword set W, the Insert i into Re

value of QC;[j] is the IDF of keyword W@, ;, otherwise it : end if
is 0. Note that when all dimensions of query QC; are 0, the 5. ond for
data user would remove QC; from QC. The other query 1.  teturn top-k documents of Re

group QR is denoted as QR = {QR1,QRs,...,QRy} and it 5. end function
is the same as QC in UGMTS. Finally, the data user submits 5.

query group @ to the cloud server. 14: function FINDTOPK(QC;, node, sco, k)
5.1.3 Query Processing 12 if sc0t< k-th score in list; then
The details of search procedure in cloud servers are shown 17: en drifurn
in Algorithm 1. When the cloud server receives query Q. 1 8: if node is leaf node then
Firstly, it processes QQC' on index group IC to get the 1 9: Tnsert the fid of node into list;
candidate documents C'List. Note that, each query in QC ) 0: else "
is only processed on its corresponding index (e.g. the query ) 1: leftScore = Score(QC;, node.l,)
QC; only be processed on index IC};). The relevance scores 22: I‘ightScore_z Score(QlC” 4 nodecr )
Eitr\l/VSeen QC; and the nodes of IC; are calculated by Equa- . if leftScore > rightScore then
) o _ ' 24: FINDTOPK(QC;, node.l., leftScore, k)
Score(QC:, Ni) = (QCy) - (Ni-val) ®) 25: FINDTOPK(QC;, node.r., rightScore, k)
Secondly, the cloud server uses Equation 6 to calculate the 26: else
final relevance scores between query group QR and the 27: FINDTOPK(QC;, node.r., rightScore, k)
documents in CList on the index group IR, and returns  28: FINDTOPK(QC;, node.l., leftScore, k)
k documents with the highest scores to the data user as 29 end if
results. An example is shown in Fig. 5. 30: end if
1: f i
Score(@QR,IR) = Y (QR))- (IRiwvaly) (6 -o-endfunction
QRJ' €EQR
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5.2 EGMTS

The UGMTS is efficient but less effective in privacy
preservation for both data owners and data users.
Therefore, for protecting the real value of indexes and
queries, we add some phantom terms and random values
into them to disturb the real relevance scores, and adopt the
secure kNN algorithm [32] to encrypt them. The framework
of the encrypted group multi-keyword top-k search scheme
(EGMTY) is as follows:

Setup(d,u,r): The data owner generates two secret
keys sk; and sko, where sky = {Si, M, My} and
sky = {S2, M3, M4}. Sy contains a group of (d + u + 1)-
bit vectors and was denoted as S; = {S},S5%,...,5%}.
Sy contains (b 4+ 1) randomly vectors, and the length
of the first b vectors is (d + r)-bit, while the last
vector occupies (r + u + 1)-bit, thus we denote S as
Sy = {S3,53,...,55, S5}, Each bit of vectors in S; and
Sy is randomly set to 1 or 0. M; and M, are two groups
of matrices, both of which contain b invertible matrices
that are (d + u + 1) x (d + u + 1). While M3 and M, both
contain b invertible matrices with (d + r) x (d + r) and
one (r +u + 1) x (r + u + 1) invertible matrices. When
the secret keys are constructed, the data owner shares them
with authorized data users.

BuildIndex(D, W,d): The method of building index I
(where I = {IC,IR}) follows the same procedure as in
UGMTS. Except that, some phantom terms are added into
all the data vectors of index I, the details are:

1. Magnify the Values of IC: In UGMTS, each index of
the index group IC is a keyword balanced binary
tree, where the values of data vector of intermediate
node are the max value from its children. But such
relation may introduce security concerns as the cloud
server can build more linear equations to calculate
the plaintext information of indexes. To hide the
relation, we magnify the value of data vectors by
adding random numbers, such that Equation 4 is
changed into vallj] = max{l..val[j],rcvallj]} +
|rand()|%omax{l..val[j], rc.vallj]}.

2. Extending IC: The dimension of each data vector in
index group IC is extended from d to d+u+-1, where
u is the number of phantom terms. In addition, the
values of phantom terms are randomly set to 0 or 1,
and the (d + u + 1)-th dimension of all these data
vectors are set to 1.

3. Extending IR: Each vector in the index group IR is
extended from d to (d+7), and the values of extended
r dimensions are the same within one index, but
varies for different indexes. Data owner also adds
a vector of length (r + u + 1) to each index, where
u is the number of phantom terms, and the values of
extended r dimensions are the same as other vectors
in the same index. Note that, both the values of
extended dimensions and phantom terms are set to
0 or 1, and all the (r + u + 1)-th dimension of added
vectors are set to 1.

EncryptIndex(IC, IR, sk1, skg): The index groups IC and
IR are encrypted before outsourcing. We use N; to denote

8

a node in index IC; and NV, to represent the stored data
vector. Furthermore, we use S} ; to denote the ¢-th vector
in 5;. Firstly, the data owner splits vector NV; into two
random vectors {N'V;, NV, } based on the value of S ;.
Specifically, if Sy ;[j] is 0, NV; [j] and NV, [j] are the same
as NV;[j];if Sy:[5]is 1, NV; [j] and N'V; [j] are set with two
random numbers, but their summation equals to N'V;[j].

After splitting process is complete, node N; stores two
encrypted vectors {MlTJ,NVi/7 MI;NV;"}, where M, ; and
M,,; represent the i-th matrices in the matrix groups M;
and M>, respectively. The encryption form of index group
IC is denoted as:

IC = {MF1C , MI1C"}
= {{MEIICD MQTIICI }7 ey {Mljjblcbﬂ MgbICb }}

The data owner also encrypts IR with secret key ska,
where the encryption method is the same as encrypting IC.
We use IR to represent the encrypted /R. Finally, the data
owner outsources IC, IR and the encrypted document
collection C' to cloud.

CreateQuery(WW,, key). The method of generating query
groups QC and QR is similar to the UGMTS. However, the
query vectors in (QC' and Q)R need to be extended, and the
details are:

1. Extending QC: Each query in QC is independent
when processing the search request, hence phantom
terms are added to them all. Thus, the query vectors
in QC are extended from d to d + v + 1 dimensions,
and the phantom terms are stored in the first u
dimensions of the extension. The values of phan-
tom terms are set to random numbers &; ; and the
(d + u + 1)-th dimension is set to another random
number \; (where ¢ = 1,...,b and j = 1,...,u).
Besides, the first d + u dimensions of each vector are
multiplied by a random positive number 7.

2. Extending QR: Before extending R, a phantom
query QQRpy1 which contains a vector of » + u + 1
dimensions was added to QR by data users. More-
over, to improve the query accuracy such phantom
terms are only added into this phantom query. When
calculating final relevance score, the cloud servers
need to treat all the queries in QR as a whole,
thus we add a number of » dummy keywords into
each query and restrict their summation to be zero,
which means that the stored vectors of the first b
queries are extended to d + r, and the values of
extended dimensions satisfy the requirement such as
QRy[f]+X0_, QRi[d+j] = 0 (where j = 1,...,7).
Note that, the above restriction is used to prevent
the cloud servers from learning the final relevance
scores between candidate documents and any single
query, if the cloud server processes Q)R as a whole,
it will get the real score, since the summation of all
dummy keywords is zero. Otherwise, the final score
will be the real score plus the score of partial dummy
keywords. In addition, the (r + j)-th dimension of
query vector QRy11 is set to random number §;
(where j = 1, ...,u) and the (r + u + 1)-th dimension
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is set to a random positive number \. Finally, all the
query vectors in the query group Q)R are scaled by a
random positive number v except the last dimension.

EncryptQuery(QC, QR, key). After query groups QC' and
QR are generated, the data user encrypts them with secret
keys sk and sks, respectively. Firstly, the data owner splits
query QC; into two random vectors {QC;, QC; }according
to the value of vector Sy ;. If Si ;[j] is 0, the sum of QC’; [7]
and QC; [j] equals to QC;[j], otherwise QC;[j] and QC; [;]
are the same as QC;[j] (where j = 1,...,d + u + 1). Finally
the query group QQC' is encrypted as below:

QC = {M;'QC", My tQC"}
= {{M[}QC;, M5 }QC;} | QC; € QC}

The data user also uses secret key sky to encrypt QR with
the same method applied to QC. In the end, the data user
submits < 6’2\6‘ , af? > to the cloud server as trapdoor where
QR denotes the encrypted QR.

Query(@\é,@\]/%, IAG, ﬁ%, k). The query processing method
over the encrypted index groups IC' and IR is similar to
UGMTS, except the relevance scores between the nodes of
index IC; and query QC); are calculated by Equation 7, and
the score between the query group QR and index IR, is
calculated by Equation 8.

Score(QC;, N;)
= (MINV] MENVYY - (MIQC M [QCTY
= v(Score(QC;, N;) + me) + N\

Jj=1

Where N; represents a node in index IC;, MlT ;NV! and
M ;NV/" are the stored data vectors of ;.

Score(QR, ﬁ?p)

= Y (IRywal) - @R,) + (IRyval)) - (QR,)
QR,€QR (8)

=(Score(QR,IR,) + Z &)+ A

Jj=1

Where ﬁ%p represents an index in .@ ﬁ{p.valg and
IR,.val] are the stored query vectors in IR,.

5.3 Security Analysis

In this paper, we do not discuss the security of document
collection, because it is encrypted by the data owner before
outsourcing to the cloud server, and the encryption method
could be any traditional encryption method that is suitable
for the concern of data owners. Hence, we assume the
encryption methods are secure and can guarantee strong
data privacy. Next, we analyze the security of our scheme
in known ciphertext model and known background model,
respectively.
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Fig. 6. The distribution of similarity score for keyword "network” with
different values of o.

5.3.1

Adversaries can calculate the real value of indexes and
queries by establishing liner equations from the exposed
ciphertext [15]. Assume /C; represents an index in the index
group IC, and it is encrypted by the secure kNN algorithm
with secret key sk, where each data vector is randomly split
into two different vectors. The number of equations that es-
tablished from the ciphertext of this index is 43m(d+u+1),
where 0 < § < 1. But index IC; contains 23m nodes and
2(d+u+1) unknown numbers in each node, there also have
2(d + u + 1)? unknown numbers in matrices M ; and My ;.
It is obvious that the size of unknowns numbers is more
than the known equations. Similarly, for the index group
IR and trapdoor, the number of unknown numbers is also
more than the known equations. Hence, adversaries have
no sufficient equations to calculate the plaintext of indexes
and trapdoors without secret key sk and sks.

According to Yao et al. [35], the secure kNN algorithm is
not secure against the chosen-plaintext attack. But next we
prove our EGMTS is secure.

Proof: Yao et al. use the known plaintext-ciphertext
pair of queries to construct linear equations to calculate
the values of index, but in our scheme, the relevance score
learned by the cloud server is

In Known Ciphertext Model

Score(@\éi, N;) = v(Score(QC;, N;) + Z&»j) + A

J=1

where Score(QC;, N;) is real score, but it is disturbed by
2 4+ u random numbers (two random numbers vy and );,
u random numbers &; ;), which means that even for two
identical queries, the relevance scores are different. Besides,
each linear equation may introduce 2 + u unknown random
numbers, therefore the unknowns in equations are always
more than the number of linear equations, so adversaries
cannot calculate the real value of index, and also cannot
infer the real value of secret key. O

In summary, the EGMTS is strong enough to protect the
security of index and query in known ciphertext model, and
it is more secure than the secure kNN algorithm.
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5.3.2 In Known Background Model

In the known background model, cloud servers have more
knowledge about the stored data, such as the normalized TF
distribution of some keywords, therefore, the cloud server
can identify these keywords by comparing the normalized
TF distributions [14], [15], [16], [30], [33]. In addition, cloud
server may learn the search interests of data users by linking
queries and exploiting access pattern.

Keyword Privacy: In EGMTS, keyword privacy can be
guaranteed by inserting random numbers ¢; ; and §; into
queries to obscure the normalized TF distributions. More-
over, random numbers &; ; and §; follow the uniform dis-
tribution U(y' — 9§, 1 + 0). According to the central limit
theorem, the >, & ; and Y75, ¢; follow the normal
distribution N(u,0?) (where 2w = wu, p = up'/2 and
0? = ud?/6). As shown in Fig. 6, the bigger is the value
of o, the higher is the level of interference, but the lower
is the query accuracy. Therefore, data users can balance the
trade off between query accuracy and keyword privacy by
adjusting the value of o.

Query Unlinkability: In EGMTS, even though each query
only contains one keyword, it is also represented as a fixed-
length vector. Hence, the cloud server cannot determine
which keywords the data user wants to search. In addi-
tion, each query vector is randomly split into two different
vectors which are encrypted before processing, and the
relevance scores are also disturbed by inserted random
numbers. Hence, the cloud server cannot distinguish even
the same search request just rely on ciphertext and relevance
scores. Moreover, according to [14], data users can control
the level of query unlinkability by adjusting the value of
phantom terms.

However, the cloud server can link two queries by com-
paring and analyzing the access pattern and visiting paths
on the index. Even though the relevance scores and visit-
ing paths are obscured by inserting random numbers, the
accuracy of queries usually get reduced with the increasing
interference, which is impractical. To better ensure the sys-
tem availability, the accuracy of queries cannot be too low.
But with the increase of query accuracy, the access pattern
and visiting paths of two identical queries are becoming
more similar (e.g., in order to guarantee the correct ratio
is above 80%, two identical queries must share at least 60%
common results and visiting nodes). Hence, the EGMTS and
EMTS [14], MRSE_II [15] and EDMRS [16] cannot perfectly
protect the query unlinkability.

6 THE SCHEME oF RGMTS

In Section 4 we have introduced the random traversal algo-
rithm which can change the visiting paths and search results
of two identical queries by using different keys. In last
section we also have introduced that EGMTS has weakness
in query unlinkability protection, since the cloud server can
link two queries by comparing and analyzing their visiting
paths and search results. In this section, we propose a ran-
dom group multi-keyword top-k search scheme (RGMTS)
which absorbs the advantages of both RTRA and EGMTS,
and provides more data security than EGMTS.

10

6.1 Building RGMTS Index

First, the data owner enlarges the document collection
D to DG* and assigns a random switch to each docu-
ment, where the method is the same as RTRA. For ex-
ample, when both E and L are set to 2, the document
collection D = {D;, Do, D3, Dy} is extended to DG* =
{D%aDévDi,ngD;D%vD%vDi}

Then, similar to the index construction in GMTS, the
data owner divides all the keywords in dictionary W into
several keyword groups and finds the top-ck documents of
each word group. But in RGMTS, all the top-ck document
groups are further extended, such as that VG, is extended
to VC7 where VG, is the top-ck documents of keyword
group WG;, and VCY is a subset of DG which contains
all the copies of documents belong to VG;. Note that, the
documents that belong to V G keep the same order as DG™.

e.g., keyword group WG contains two keywords {a, b}
and its top-ck documents are VG = {Dy, Dy, D4}, after
VG, is extended to VGY, the data owner gets VG =
{Di,D}, D3, D3 D% D}}, where VG¥ C DG”.

The data owner uses the extended top-ck documents
to build a searchable index for each keyword group, by
using the method which has been applied to EGMTS. For
instance, the data user uses V' G7 instead of VG, to build a
searchable index for keyword group W G,. Suppose we use
< fid,l.,rc,val > to represent one node of these searchable
indexes, where fid is the document identifier, /. and r. are
the left and right child, respectively, val is a data vector of e
(where e = d 4+ u 4 r + 1). We also specified that the first d
dimensions of the vector are the TF of its corresponding
keywords, the (d + j)-th (where j = 1,...,u) dimension
stores phantom terms, the (d + u + j)-th dimension stores
the switch of this node (where j = 1,...,7), and the e-th
dimension is set to 1. The data owner also builds an index
group IR for document collection DG*, where the switch
is stored in the added data vector. Finally, the data owner
encrypts collection DG?, index groups IC and IR, and
sends them to cloud.

6.2 Search Process of RGMTS

When the data user wants to search with keyword set W,
s/he constructs two query groups QC' and QR using the
method which is similar to EGMTS, except that:

1. The query vector in query group QC is extended
from (d+u+1) toe;

2. Each query of QC is assigned a random key, and
these keys are stored in the (d + u + 1)-th dimension
to (d + u + r)-th dimension of each vector.

3. The data user assigns a random key to the phantom
query in the query group QR.

The data user encrypts QC and @R, and sends them
to cloud as trapdoor 7. When processing the query QCj,
which represents a query of QC, the cloud server calculates
the relevance scores between QC; and the nodes of index
IC; from the root to the leaf, but only when the score of one
node is larger than zero, its children nodes will be traversed.
After that, the cloud server merges all the results into C'List
as candidate documents and calculates the relevance scores
between the documents in C'List and the query group
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C,’Q\R Finally, the cloud server returns k documents with the
highest relevance scores to the data user as search results.

6.3 Security Analysis

The RGMTS takes the advantage of RTRA which make sure
that if the data user submits two identical queries with
different keys, our search procedure in the cloud server
must have different visiting paths and results, and in the
meantime it maintains the accuracy of queries unchanged.
In addition, it is easy to conclude that the probability of
getting the same query results and visiting paths of two
identical queries is less than 1/ EL, and the expectation of
the number of common documents between the two search
results is less than |Re|/E. Therefore, we can control the
level of query unlinkability by adjusting the value of £ and
L, and without sacrificing the correct ratio.

In order to completely hide access pattern and visiting
paths, which requires the probability of getting the same
results and visiting paths of two identical queries must be
less than or equal to that the probability of two different
queries. Therefore, the value of ' would be very large,
but with the increasing of value F, the index space is also
becoming larger (even though we can decrease the storage
space by only store the top-ck documents), thus data owners
have to balance the trade-off between data security and
storage space by adjusting the value of E.

In summary, the RGMTS trades space for data security,
which can better protect the query unlinkability and access
pattern than most existing works (such as [14], [15], [16]).

7 PERFORMANCE ANALYSIS

In this section, we first describe the experimental setup
and scenarios, then we analyze the performance of our
schemes from two aspects: 1) the precision and privacy;
2) the efficiency of index construction, trapdoor generation
and query processing. As one reference point, for query
efficiency, we compare the time cost of our solution with
the approach EDMRS as proposed in [16], which represents
the latest research finding with high query efficiency.

71

The overview of our system is shown in Fig. 1, the main
functions of three module are briefly summarized as follow:
1) the data owner encrypts raw collection D to get encrypted
version C, and builds searchable index I. based on C; 2)
the data user encrypts the query to construct trapdoor T',
by using the key as shared by the data owner, and get
the encrypted query results from the cloud server; 3) the
cloud server stores the outsourced C' and I, from the data
owner, it traverses the index to process encrypted queries,
and returns those documents with top-k highest scores.
To test the performance of our schemes, we implement
our system based on GMTS and RGMTS. In particular,
the former two modules are implemented with C language
and Python on a Windows 10 PC with Intel(R) Core(TM)
i5-4590 CPU 3.30GHz and 4 Gigabyte memory. The cloud
server module is implemented with C language on a Linux
Server with Intel(R) Xeon(R) CPU E5620 Processors 2.40GHz
and 24 Gigabyte memory. For convenience and fairness, we

System Implementation
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Fig. 7. The impact of ¢ on precision, we set n = 4000. (a) For the
different values of ¢ with the same &, we set k£ = 50. (b) For the different
values of k with the same ¢, we set ¢ = 1.

implement EDMRS and MRSE on the same programming
languages and platform as that of GMTS and RGMTS.

Dataset: We randomly select 12000 emails as our collec-
tion D from a publicly available real-life data set: the Enron
Email Data Set [36]. In addition, we randomly extract 12000
keywords from these emails as our dictionary with Python,
where each keyword is processed by Porters stemming
algorithm [37] which excludes the stop words.

7.2 Precision and Privacy

Without loss of generality, we adopt the definition of "pre-
cision” from [15], in which precision P} is defined as
P, = k' /k, where k' is the number of real top-k documents
in query results.

As described in Section 5.1.1, to decrease the size of in-
dexes and improve the query efficiency, we adopt champion
lists to our schemes, where each index only stores the
top-ck documents of its corresponding keyword group. It
is obvious that the previous methods may result in lower
accuracy of queries. However, the data user in our scheme
can control the query accuracy by tuning c. As shown in
Fig. 7 that the larger value of c is, the higher is the precision
we get. Fig. 7 also indicates that ¢ has only limited impacts
when its value beyond a certain point, that is because most
of the top-k documents in a multi-keyword query appear in
the union of search results for one single keyword query.

The works [14], [15], [16] are not designed to protect
access pattern, and they only add random number &; into
index or queries to control the level of query unlinkability.
However, as we know the adversaries can link two queries
by comparing and analyzing the access pattern, thus these
works cannot protect the query unlinkability perfectly. In
our work, we not only adopt random numbers to control
the query unlinkability, but we also proposed RTRA to hide
the access pattern. Although the access pattern is hard to
hide thoroughly, we can reduce its leakage and increase the
difficulty of cloud servers to link two identical queries. One
obvious observation is that if the number of common docu-
ments between the query results of two identical queries
becomes smaller, then it will be more difficult for cloud
servers to distinguish from these two queries. Hence, we
define the level of query unlinkability as d; = 1 — k" /k,
where k" is the number of common documents between the
two query results. In RGMTS, we know that the number
k" for two identical queries decreases as the value of E
increases. Therefore, as shown in Fig. 8(a), the level of query
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unlinkability of RGMTS is increased with larger E, but
EDMRS [16] and MRSE [15] do not have such property. On
the other hand, to protect the privacy of keyword in the
query, random number £; was added to each query, which
can directly affect the query precision. Fig. 8(b) shows the
influence of &; on precision, where ; follows the normal
distribution N (u,0?), and o is the standard deviation.

7.3 Efficiency
7.3.1

The procedure of index construction can be divided into
two steps: 1) building a tree-based index group IC for all
the keywords and constructing an index IR for document
collection D; 2) encrypting all nodes in the indexes with
secret keys sk or sks.

As introduced in previous section, when building the
index IC, each index only stores the top-ck documents of
its corresponding keyword group. Therefore, the above op-
eration only generates O(8mb) nodes, where [ is a decimal
which is less than or equal to 2. On the other hand, our
scheme generates O(mb) nodes when building index IR.
Opverall, there are totally O(#mb) nodes will be generated
during the index construction, where § = 1 + 3.

Node encryption needs a splitting process and two
multiplications of e x e matrix, where e is the length of
vector in each node, which equals to (d + u + 1) in GTMS
and (d 4+ u + r + 1) in RGMTS (we ignore the different
length of vectors in /C' and I R). The splitting process takes
O(d) time and the two multiplications takes O(e?) time.
Hence, we can conclude that the time complexity of index
construction is approximately equal to O(6mbe?). Note that,

Index construction
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of query and fixed size of dictionary W with n = 4000.

TABLE 2
Size of index
Size of dictio- | 2000 4000 6000 8000
nary
GMTS (MB) 159 314 473 574
RGMTS (MB) 345 682 1027 1232

in this paper, we compare our schemes with EDMRS, which
is more efficient than MRSE [15] and other methods. The
time complexity of EDMRS is O(n?m). It is obvious that
our schemes are mainly influenced by e, but EDMRS is
proportional to the square of n, where n = |W|. On the
other hand, the index of EDMRS is encrypted by two n x n
matrices, which is time-consuming. But the indexes of our
schemes are encrypted by several e x e matrices, where e is
smaller than n. So, our schemes usually spend less time in
encrypting the indexes. As shown in Fig. 9, our schemes are
more efficient than EDMRS in index construction. Table 2
shows the storage overhead of our indexes (m = 4000,
EF=2andc=1).

7.3.2 Create Trapdoor

In EDMRS, no matter how many keywords are contained in
the query Wy, the length of trapdoor is always equal to the
size of dictionary, where the trapdoor is a vector. However,
in most of the time, people are likely to search just with five
keywords or less [14], [38]. Therefore, most dimensions of
the trapdoor are equal to 0, which wastes the computing
resources greatly. In our schemes, the trapdoor is divided
into b parts, like the dictionary W, and each part is called
a query which is a vector with length d. If all dimensions
of a query are equal to 0, we remove it from the trapdoor.
For example, assume our dictionary W contains n = 8000
keywords, and we divide it into b = 100 groups where each
group contains d = 80 keywords. If the size of W, is 5, then
the generated trapdoor at most contains 5 queries, where
each query includes one 80-dimensional vector. Therefore,
the total length of our trapdoor is 400 at most, but the length
of the trapdoor in EDMRS is 8000. Hence, in our schemes,
the data user can take less time in trapdoor encryption. The
time complexity of trapdoor construction in both GMTS
and RGMTS are O(te?), where t is the number of queries
in trapdoor. In the worst case, ¢ equals to the size of W,.
Obviously, the time complexity is independent of the size
of dictionary, and it is only affected by the size of vectors
in queries and the size of trapdoor. In Fig. 10, we can
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observe that our proposed scheme significantly outperforms
the EDMRS in trapdoor construction.

7.3.3 Search

We improve query efficiency in three ways: 1) we build
a searchable index for each keyword group instead of the
whole dictionary; 2) each index only stores the top-ck doc-
uments of its corresponding keyword group; 3) every index
is structured as a keyword balanced binary tree.

As mentioned above, the data user divides the origi-
nal query into several queries and only sends non-empty
queries to the cloud server. Therefore, with the first method,
the cloud server does not need to search the indexes of all
keyword groups. On the other side, the number of nodes
in indexes was decreased with the second method, which
avoid excessive search on extraneous nodes. Besides, with
the third method, when we calculate the relevance scores
between any node and queries, if the score of one node is
less than the minimum score in CList, then its children
nodes will not be traversed, thus many nodes could be
pruned during our traversal process. With these methods,
the overall computational cost is greatly reduced in our
search procedure, and in the meantime we can guarantee
the query privacy. Because the number of keywords in a
query can be ranged from 1 to d, the cloud server cannot
identify which keywords the data user wants to search.

We compare the query efficiency of our methods with
EDMRS under different parameter settings. In particular, we
study m (dataset size), ¢ (query size), n (dictionary size)
and the effect of k£ (parameter k£ in our top-k query) on
real datasets. All results in Fig. 11 and Fig. 12 demonstrate
that our methods are much more efficient in search time.
In particular, Fig. 12(a) shows that the query time of each
method increases with k since they all need more time to
process the data. Similarly, both figures in Fig. 11 show that
the query time of each algorithm increases with m and ¢,
respectively. On the other hand, the time cost of query in our
methods is independent of the dictionary size. So, as shown
in Fig. 12(b), the efficiency of query in EDMRS drops sharply
with the increased size n of dictionary, but our methods still
maintain high efficiency.

8 CONCLUSION

In this paper, we focus on improving the efficiency and
the security of multi-keyword top-k similarity search over
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Fig. 12. Time cost of search. (a) for fixed n and m with different values
of k ( where k is the number of documents that the data user wants to
retrieve, and n = 4000, m = 8000, ¢t = 10 ). (b) the time cost of search
with different sizes of the dictionary W, we set the size of the document
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encrypted data. At first, we propose the random traversal
algorithm which can achieve that for two identical queries
with different keys, the cloud server traverses different
paths on the index, and the data user receives different
results but with the same high level of query accuracies
in the mean time. Then, in order to improve the search
efficiency, we design the group multi-keyword top-k search
scheme, which divides the dictionary into multiple groups
and only needs to store the top-ck documents of each word
group when building index. Next, to protect the query
unlinkability, we apply the random traversal algorithm to
get the RGMTS, which can increase the difficulty of cloud
servers to conduct linkage attacks on two identical queries,
and we can also tune the value of I to make the level of
query unlinkability flexible for data owners. Finally, the ex-
perimental results show that our methods are more efficient
and more secure than the state-of-the-art methods.
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